Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

¾ç±Ø»êÈ­¿Í ¼®È¸È­ ¼øȯó¸® Á¶°ÇÀÌ Å¸ÀÌŸ´½ ¹ÚÆÇÀÇ Ç¥¸éƯ¼º ¹× »ýüȰ¼º¿¡ ¹ÌÄ¡´Â ¿µÇâ

Effects of conditions for anodization and cyclic precalcification treatments on surface characteristics and bioactivity

´ëÇÑÄ¡°úÀç·áÇÐȸÁö 2018³â 45±Ç 4È£ p.243 ~ 256
À忬¼ö, ÀÌ°­±Ô, Àü¿ì¿ë, ÇѾƸ§, ÀÓûÇÏ, À̹ÎÈ£, ¹èżº,
¼Ò¼Ó »ó¼¼Á¤º¸
À忬¼ö ( Jang Yeon-Soo ) - ÀüºÏ´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú»ýüÀç·áÇб³½Ç
ÀÌ°­±Ô ( Lee Kang-Gyu ) - ÀüºÏ´ëÇб³ ´ëÇпø Ä¡°ú±³Á¤Çб³½Ç
Àü¿ì¿ë ( Jeon Woo-Yong ) - ±¤¾çº¸°Ç´ëÇÐ Ä¡±â°ø°ú
ÇѾƸ§ ( Han A-Lum ) - ¿ø±¤´ëÇб³ ÀÇ°ú´ëÇÐ °¡Á¤ÀÇÇб³½Ç
ÀÓûÇÏ ( Lim Chung-Ha ) - ÀüºÏ´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú»ýüÀç·áÇб³½Ç
À̹ÎÈ£ ( Lee Min-Ho ) - ÀüºÏ´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú»ýüÀç·áÇб³½Ç
¹èżº ( Bae Tae-Sung ) - ÀüºÏ´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú»ýüÀç·áÇб³½Ç

Abstract

º» ¿¬±¸¿¡¼­´Â »ýüȰ¼º ŸÀÌŸ´½ Â÷Æó¸·ÀÇ Á¦Á¶¿¡ ÇÊ¿äÇÑ ±âÃÊÀûÀÎ ÀڷḦ ¾ò±â À§Çؼ­ ŸÀÌŸ´½ ¹ÚÆÇÀÇ ¾ç±Ø»êȭó¸®¿Í ¼®È¸È­ ¼øȯó¸®ÀÇ Á¶°Ç ¹× À̵é Ç¥¸é󸮰¡ Ç¥¸éƯ¼º°ú »ýüȰ¼ºµµ¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÏ¿© Á¶»çÇÏ¿´´Ù. 30¡¿20¡¿0.08mm ÀÇ Å¸ÀÌŸ´½ ÆÇÀ» ÁغñÇÑ ´ÙÀ½ HNO3 : HF : H2O ¸¦ 12 : 7 : 81 ·Î È¥ÇÕÇÑ ¿ë¾×¿¡¼­ 10 ÃÊ µ¿¾È »ê¼¼Ã³¸® ÈÄ »ç¿ëÇÏ¿´´Ù. ŸÀÌŸ´½ Â÷Æó¸·ÀÇ ºñÇ¥¸éÀûÀ» Áõ°¡½ÃÅ°±â À§Çؼ­ ³ª³ëÆ©ºê TiO2 ÃþÀ» Çü¼ºÇÑ ÈÄ, ÇÏÀ̵å·Ï½Ã¾ÆÆÄŸÀÌÆ®ÀÇ ¼®Ãâ¿¡ µû¸¥ »ýüȰ¼ºµµ¸¦ °³¼±Çϱâ À§Çؼ­ ¼®È¸È­ ¼øȯ󸮸¦ ÇÏ¿´´Ù. Ç¥¸éó¸®µÈ Ç¥¸éƯ¼ºÀ» Æò°¡Çϱâ À§Çؼ­, ºÎ½Ä¿¡ ´ëÇÑ ÀúÇ×¼º½ÃÇè, Á¥À½¼º °Ë»ç, À¯»çü¾× ħÀû½ÃÇèÀ» ½Ç½ÃÇÏ¿´´Ù. ¾ç±Ø»êȭ󸮷ΠÇü¼ºµÈ ³ª³ëÆ©ºêµéÀº »ó´ëÀûÀ¸·Î Å« Á÷°æÀÇ Æ©ºêµé°ú ÀÛÀº Á÷°æÀÇ Æ©ºêµé·Î ±¸¼ºµÇ¾î ÀÖ¾úÀ¸¸ç, ³»ºÎ´Â ºñ¾îÀÖ°í ¿Üº®Àº ¼­·Î °áÇյǾî ÀÖ´Â ±¸Á¶¸¦ º¸¿´´Ù. ¿¬¼ÓÀûÀ¸·Î ½ÃÇàµÈ ¼®È¸È­ ¼øȯ󸮷Π³ª³ëÆ©ºêÃþ¿¡ ÇÏÀ̵å·Ï½Ã¾ÆÆÄŸÀÌÆ® ¼®Ãâ¹°ÀÌ Ä§ÅõµÇ¾î °áÇÕÀÌ ÀϾÀ¸¸ç, ¼øȯó¸® ȸ¼ö°¡ Áõ°¡ÇÔ¿¡ µû¶ó¼­ HAp ÀÇ ¼®Ãâ·®ÀÌ ºñ·ÊÀûÀ¸·Î Áõ°¡ÇÏ´Â °æÇâÀ» º¸¿´´Ù. °á·ÐÀûÀ¸·Î, ŸÀÌŸ´½ Â÷Æó¸·ÀÇ Ç¥¸é¿¡ ³ª³ëÆ©ºê TiO2 ÃþÀ» Çü¼ºÇÑ ÈÄ ¼®È¸È­ ¼øȯ󸮸¦ ÇÏ¿©¼­ HAp ÀÇ ¼®ÃâÀ» À¯µµÇÏ´Â °ÍÀº »ýüȰ¼ºµµ °³¼±¿¡ Å©°Ô ±â¿©ÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» È®ÀÎÇÏ¿´´Ù.

The purpose of this study was to investigate the effects of the anodization and cyclic calcification treatment on the surface characteristic and bioactivity of the titanium thin sheet in order to obtain basic data for the production of bioactive titanium membrane. A 30¡¿20¡¿0.08 mm titanium sheets were prepared, and then they were pickled for 10 seconds in the solution which was mixed with HNO3: HF: H2O in a ratio of 12: 7: 81. The TiO2 nanotube layer was formed to increase the specific surface area of the titanium, and then the cyclic calcification treatment was performed to induce precipitation of hydroxiapatite by improvement of the bioactivity. The corrosion resistance test, wettability test and immersion test in simulated body solution were conducted to investigate the effect of these surface treatments. The nanotubes formed by the anodization treatment have a dense structure in which small diameter tubes are formed between relatively large diameter tubes, and their inside was hollow and the outer walls were coupled to each other. The hydroxyapatite precipitates were well combined on the nanotubes by the penetration into the nanotube layer by successive cyclic calcification treatment, and the precipitation of hydroxyapatite tended to increase proportionally after immersion in simulated body solution as the number of cycles increased. In conclusion, it was confirmed that induction of precipitation of hydroxyapatite by cyclic calcification treatment after forming the nanotube TiO2 nanotube layer on the surface of the titanium membrane can contribute to improvement of bioactivity.

Å°¿öµå

ŸÀÌŸ´½ Â÷Æó¸·; ¾ç±Ø»êȭó¸®; TiO2 ³ª³ëÆ©ºê; ¼®È¸È­¼øȯó¸®
Titanium membrane; Anodic oxidation treatment; Nanotubular TiO2 layer; Cyclic precalcification treatment

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI